Non-Monotone Projected Gradient Method in Linear Elasticity Contact Problems with Given Friction
نویسندگان
چکیده
منابع مشابه
Domain decomposition for generalized unilateral semi-coercive contact problem with given friction in elasticity
A non-overlapping domain decomposition is applied to a multibody unilateral contact problem with given friction (Tresca’s model). Approximations are proposed on the basis of the primary variational formulation (in terms of displacements) and linear finite elements. For the discretized problem we employ the concept of local Schur complements, grouping every two subdomains which share a contact a...
متن کاملAccelerated Projected Gradient Method for Linear Inverse Problems with Sparsity Constraints
Regularization of ill-posed linear inverse problems via l1 penalization has been proposed for cases where the solution is known to be (almost) sparse. One way to obtain the minimizer of such an l1 penalized functional is via an iterative soft-thresholding algorithm. We propose an alternative implementation to l1-constraints, using a gradient method, with projection on l1-balls. The correspondin...
متن کاملGradient schemes for linear and non-linear elasticity equations
The Gradient Scheme framework provides a unified analysis setting for many different families of numerical methods for diffusion equations. We show in this paper that the Gradient Scheme framework can be adapted to elasticity equations, and provides error estimates for linear elasticity and convergence results for non-linear elasticity. We also establish that several classical and modern numeri...
متن کاملAdaptive hp-FEM for the Contact Problem with Tresca Friction in Linear Elasticity: The Primal Formulation
We present an a priori analysis of the hp-version of the finite element method for the primal formulation of frictional contact in linear elasticity. We introduce a new limiting case estimate for the interpolation error at Gauss and Gauss-Lobatto quadrature points. An hp-adaptive strategy is presented; numerical results shows that this strategy can lead to exponential convergence.
متن کاملA Multigrid Semismooth Newton Method for Contact Problems in Linear Elasticity
A multigrid semismooth Newton method for elastic contact problems is developed and analyzed. We show that after a suitable regularization of the contact problem superlinear local convergence is obtained for a class of semismooth Newton methods. In addition, an estimate for the order of the error introduced by the regularization is derived. The main part of the paper is devoted to the analysis o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sustainability
سال: 2020
ISSN: 2071-1050
DOI: 10.3390/su12208674